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Abstract— The stability analysis problem is studied in this paper 

for continuous-time switched time-delay systems. These systems 

are given by delayed differential equations. Therefore, a 

transformation under the arrow form is employed. Indeed, by 

contracting an appropriated Lyapunov function and as well by 

using the Kotelyanski lemma associated with the M-matrix 

proprieties, new delay-dependent stability conditions under 

arbitrary switching are deduced. The obtained result allows us to 

avoid the search of a common Lyapunov function which is a very 

difficult problem. Finally, a numerical example is presented to 

illustrate the effectiveness of the proposed approach.     

Keywords— Continuous-time switched time-delay systems; M-

matrix proprieties; Kotelyanski lemma; arbitrary switching    

I. INTRODUCTION 

A switched system is a type of hybrid dynamical system 

that usually consists of a family of systems which are 

modelled by differential or difference equations and a rule that 

determines the system that is activated at certain time interval. 

As a special class of hybrid system, many dynamical systems 

can be modelled as switched systems [1–6].  

On the other hand, time-delay phenomena are very 

common in practical systems. Indeed, switched time-delay 

systems have various applications in practical engineering 

systems such as power systems [7], power electronics [8] and 

networked control systems [9]. However, it is very importance 

to investigate switched time-delay systems. Therefore, the 

presence of delay makes the analysis and synthesis problems 

for these systems much more complicated.  

Undoubtedly, stability is the first requirement for a system 

to work normally. Therefore, stability under arbitrary 

switching is fundamental in the design and analysis of 

switched systems [2, 5, 6, 9-14]. Indeed, this problem has 

been difficult and essential in researches. However, it 

becomes more complicated when switched time-delay systems 

are considered. In this framework, a common Lyapunov 

function for all subsystems was proved to be a necessary and 

sufficient condition for such systems to be asymptotically 

stable under arbitrary switching [6, 11-13]. But, this method is 

usually very difficult to apply even for continuous-time 

switched linear systems [2, 14]. Thus, the conservatism 

related to the common Lyapunov function has motivated us to 

look for another alternative.  

In this paper, based on the construction of a common 

Lyapunov function and the use of the Kotelyanski lemma [15-

20] combined to the matrixM −  properties [21-23], new 

delay-dependent sufficient stability conditions for continuous-

time switched delay systems under arbitrary switching are 

deduced. Noted that, this proposed method can guarantee the 

stability under arbitrary switching and allows us to avoid the 

search of a common Lyapunov function.  

Within the frame of studying the stability analysis, this 

approach was introduced in [15, 16] for continuous-time delay 

systems and in our previous work [17-19] for discrete-time 

switched time-delay systems.   

The rest of this paper is organized as follows. Section 2 

formulates the problem and presents the preliminary results. 

The main results of this paper are presented in Section 3. 

Section 4 is devoted to derive new delay-independent 

conditions for asymptotic stability of switched system defined 

by differential equations. Numerical example is given to 

illustrate the effectiveness of the proposed approach in Section 

5. Finally, we conclude in Section 6. 

II. PROBLEM FORMULATION AND PRELILINAIES 

A. Problem formulation 

Consider the following switched time-delay system formed 

by N  subsystems given in the state form:   

( ) ( ) ( ) ( )( )

( ) ( ) [ ]
1

   ,0

N

i i i

i

t v t x t D x t h

x t t t h

x A
=

 + − = φ ∈ −

=∑�

         (1) 

where ( ) nx t ∈ℜ  is the state vector, 0h >  is the time delay, 

iA  and iD  are constant matrices of appropriate dimensions 

for i N∈ . ( )tφ  is the continuous initial function. The 



switching sequence is defined through a switching vector 

( ) ( ) ( )1 ,..., 
T

Nv t v t v t =    whose components 

( ) :iv t { }0,1M+ℜ → =  are an exogenous functions that 

depends only on the time and not on the state, they are defined 

through :  

( )
1 if  and  are actived

0 otherwise

i i
i

   A D
v t

   

=
    and ( )

N

i=1

1iv t =∑     (2) 

B. Notations and definitions 

Throughout this paper, if not explicitly stated, matrices are 

assumed to have compatible dimensions. I  is an identity 

matrix with appropriate dimension. Let nℜ  denoted an n  

dimensional linear vector space over the reals .  stands for 

the Euclidean norm of vectors. For any ( )
1i i n

u u
≤ ≤

= , 

( )
1

n
i i n

v v
≤ ≤

= ∈ ℜ  we define the scalar product of the vector 

u  and v  as:

1

,

n

i i

i

u v u v

=

=∑ . ( )Mλ  denote the set of 

eigenvalues of matrix ( ), 1 ,i j
i j n

M m
≤ ≤

= , 
T

M  its transpose 

and 
1

M
−

 its inverse and we denote ( )
,

* *

1 ,i j i j n
M m

≤ ≤
= with 

,

*
,i j i jm m=  if i j=  and 

,

*
,i j i jm m=  if i j≠  and 

,i jM m= , ,i j∀ .  

In order to have a precise formulation of our results, we 

first introduce the following definitions and lemma.  

Definition 1. The system (1) is said to be uniformly 

asymptotically stable if for any 0ε > , there is a ( ) 0δ ε >  

such that ( )
0

max
h t

t
− ≤ ≤

φ < δ  implies ( ),x t εφ ≤  , 0t ≥ . For 

arbitrary switching ( )v t , and there is also a 'δ  such that 

( )
0

max '
h t

t
− ≤ ≤

φ < δ  implies ( ), 0x t φ →   as t → ∞  for 

arbitrary switching signal.  

In the next, we introduce the Kotelyanski lemma. 

Kotelyanski lemma. [17] The real parts of the eigenvalues of 

matrix A , with non-negative off-diagonal elements, are less 

than a real number µ  if and only if all those of matrix M , 

,nM I Aµ= −  are positive, with nI  the n  identity matrix. 

When successive principal minors of matrix ( )A−  are 

positive, Kotelyanski lemma permits to conclude on stability 

property of the system characterized by A .  

In the following we will introduce the theorem for the 

matrixM − properties.  

Theorem 1. [16] The matrix ( )
1 ,ij

i j n
A a

≤ ≤
=  is said an 

matrixM − if the following properties are verified:  

• All the eigenvalues of A  have a positive real part;  

• The real eigenvalues are positives;   

• The principal minors of A  are positive:   

( )
1 2 ... 

0
1 2 ... 

j
A

j

  >   
 1,...,j n∀ ∈                       (3) 

• For any positive vector ( )1 ,...,
T

nx x x=  the algebraic 

equations Ax  have a positive solution ( )1 ,...,
T

nw w w=  

Definition 2. ( )
1 ,ij

i j n
A a

≤ ≤
=  is the opposite of an 

matrixM −  if ( )A−  is an matrixM − .  

Remark 1. A continuous-time system characterized by a 

matrix A  is stable if the matrix A  is the opposite of an 

matrixM − . Indeed, if such condition is verified, then the 

principal minors of matrix ( )A−  are positive and the 

Kotelyanski lemma permits to conclude on stability property of 

the system characterized by A .  

III. MAIN RESULTS 

In the following, the delay-dependent conditions will be 

proposed to guarantee the globally asymptotic stability of 

system (1) under arbitrary switching signal (2). 

Theorem 2. The switched time-delay system (1) is 

asymptotically stable under arbitrary switching rule (2) if the 

matrix cT  is the opposite of an matrixM − . 

where:    

( )( )
1
maxc v t

i N
T T

≤ ≤
=                                    (4) 

 and:   

( ) ( ) ( )( ) ( ) ( ) ( )( )*
2

v t v t v t v t v t v tT A D h A D D= + + +         (5) 
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        (6) 

and:  
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v t
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D
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= =

 
 
 
 
 
 
 =  
 
 
 
 
 
  

∑ ∑

∑ ∑

� � � �

� � � �

       (7) 

�  

We have that a sufficient condition for asymptotic stability of 

system (1).  

Proof [15, 16]. Let’s consider the system (1) of any switching 

signal (2), let ( )0, 1,...,lw l n> ∀ = . By the Leibniz–Newton 



formula, we have ( ) ( ) ( )
t

t h

x s ds x s x s h
−

= − −∫ � , system 

defined in (1) becomes: 

( ) ( ) ( ) ( ) ( )( )
1

Nt

i i i
t h

i

x s h x s v t A x s D x s h ds
− =

  − = − + −    
∑∫    (8) 

Then, the system defined in (1) become:   

    ( ) ( ) ( ) ( )
1 1

N N

i i i i

i i

x t v t A v t D x t�

= =

  = +    
∑ ∑  

            ( ) ( ) ( )
1 1

N N t

i i i i
t h

i i

v t A v t D x s ds�
−= =

      −         
∑ ∑ ∫  

( ) ( )
2

1

N t

i i
t h

i

v t D x s h ds
−=

  − −   
∑ ∫ � , }{1,...,i N∈          (9)  

and finally, by considering the relations (5) and (6) , system (1) 

can be written as follows:   

( ) ( ) ( )( ) ( )v t v tx t A D x t= +� ( ) ( )( ) ( )
t

v t v t
t h

A D x s ds�
−

− ∫  

( )( ) ( )
2 t

v t
t h

D x s h ds�
−

− −∫ , }{1,...,i N∈                 (10) 

Now, we define the following Lyapunov functional:  

( ) ( ) ( ) ( ) ( )1 2 3 4V t V t V t V t V t= + + +                 (11) 

where:  

 ( ) ( )1 ,V t x t w=                           (12) 

( ) ( ) ( ) ( )
0

2 ,
t

v t v t
h t

V t A D x s d ds w
+

= ∫ ∫
θ

θ         (13) 

( ) ( ) ( )
0

2
3 ,

t

v t
h t

V t D x s h d ds w
+

= −∫ ∫
θ

θ         (14) 

( ) ( ) ( )2
4 ,

t

v t
t h

V t h D x s ds w
−

= ∫          (15) 

it is easy to see that ( )0V t <∞  

Now, we are in a position to compute the derivative ( )V t  

along the trajectory of system (1), therefore:  

( ) ( ) ( ) ( ) ( )1 2 3 4dV t dV t dV t dV t dV t

dt dt dt dt dt
= + + +          (16) 

where:   

( ) ( )
( )( ) ( )1

, sgn ,
d x tdV t dx t

w Dx t w
dt dt dt

= =       (17) 

 and:   

( )( )
( )( )

( )( )

1sgn

sgn                        

                               sgn n

Dx t

Dx t

Dx t

     =      

�         (18) 

Then, we have:   

( )1dV t

dt
= ( )( ) ( ) ( )( ) ( )sgn v t v tDx t A D x t+ ( ) ( )( )v t v tA D− ×  

( ) ( )( ) ( )
2

,
t t

v t
t h t h

x s ds D x s h ds w
− −

  − −   ∫ ∫              (19) 

( ) ( )( ) ( ) ( ) ( )( ) ( )
* t

v t v t v t v t
t h

A D x t A D x s ds
−

< + + ∫  

( ) ( )
2

,
t

v t
t h

D x s h ds w
−

  + −   ∫                        (20) 

and finally:  

( ) ( )( ) ( )
*

,v t v tA D x t w= + ( ) ( )( ) ( ) ,
t

v t v t
t h

A D x s ds w
−

+ ∫  

( ) ( )
2

,
t

v t
t h

D x s h ds w
−

+ −∫                      (21) 

( )
( ) ( )( ) ( ) ( )2

,
t

v t v t
t h

dV t
A D h x t x s ds w

dt −

  = −   ∫       (22) 

( ) ( ) ( ) ( ) ( ) ( ), ,
t

v t v t v t v t
t h

h A D x t w A D x s ds w
−

= − ∫     (23) 

( )
( )( ) ( ) ( )3 2 ,

t

v t
t h

dV t
D h x t h x s h ds w

dt −

  = − − −   ∫   (24) 

( ) ( ) ( ) ( )2 2, ,
t

v t v t
t h

h D x t h w D x s h ds w
−

= − − −∫   (25) 

( )
( ) ( ) ( )( )4 2 ,

v t

dV t
h D x t x t h w

dt
= − −                  (26) 

( ) ( ) ( ) ( )2 2, ,v t v th D x t w h D x t h w= − −           (27) 

Finally, by adding equations (21), (23), (25) and (26) we 

obtain:  

( )
( ) ( )( ) ( )

*

,
v t v t

dV t
A D x t w

dt
< +  ( ) ( ) ( ) ,

v t v t
h A D x t w+  

( ) ( ) ( ) ( )2 , ,v t v th D x t w T x t w+ =                (28) 

and finally: 

( )
( ) ,c

dV t
T x t w

dt
<                             (29) 

where cT  is defined in (4). 

Knowing that:  

( ) ( ), ,T
c cT x t w T w x t=                      (30) 

On the other hand, we suppose that cT  is the opposite of an 

matrixM − , by according to the proprieties of the 

matrixM − , we can find a vector 

( )* *   1,...,n
l l n+ +ρ ∈ℜ ρ ∈ℜ =  satisfying the next relation 

( ) *,
T n

cT w w +=−ρ ∀ ∈ℜ  , so, we can establish the following 

relation:   

( ) ( ) ( ) ( ) ( ), , ,
T

c cT x t w T w x k x t= = −ρ        (31) 

Now, taking into account (31), then relation (29) becomes:   



( )
( ) ( )

1

, 0

n

l

l

dV t
x t x t

dt
=

< −ρ =− ρ <∑            (32) 

This completes the proof of Theorem 2. 

�  

�  
IV. APPLICATION TO SWITCHED SYSTEMS DEFINED 

BY DIFFERENTIAL EQUATIONS  

In this section, we will applied the previous obtained results 

to switched systems modelled by the following functional 

linear delay differential equation:    

( ) ( ) ( ) ( )
1

1 1

N n
jn j

i i

i j

y t v t a y t

−

= =

   +     
∑ ∑  

( ) ( ) ( )
1

1 1

0

N n
jj

i i

i j

v t d y t h

−

= =

   + − =    
∑ ∑ , 0h >     (33) 

The presence of delay renders the stability study of this 

problem very difficult. However to solve it, the proposed 

solution consists to use the following matrix representation 

[15-19]:  

( )
( )

( )1

j

j j

dy
x t

dt
+ = , 1,..., 1j n= −                (34) 

By substituting relation (34) in equation (33), we obtain:  

( ) ( )

( ) ( ) ( ) ( )

1

1 1

1 1

1 0 0

j j

N n n
j j

n i i j i j

i j j

x t x t

x t v t a x t d x t h

+

− −

+ +
= = =

 =     =− + −     
∑ ∑ ∑

�

�
  (35) 

or in matrix form, we obtain the following state  

representation:   

( ) ( ) ( ) ( )( )

( ) ( ) [ ]
1

   , 0

N

i i i

i

t v t x t D x t h

x t t t h

x A
=

 + − = φ ∈ −

=∑�

              (36) 

where ( )x t  is the state vector, whose these components are 

( )jx t , 1,..., 1j n= − , ( )iv t
 
is the switching signal given in 

(2), and matrices iA  and iD
 
are given as following [17]:   

0 1 1

0 1 0

0 0

1
i

n

i i i

A

a a a
−

 
 
 
 =  
 
 − − −  

�

� �

� � �

�

                      (37) 

0 1 1

0 0 0

0 0

0
i

n

i i i

D

d d d
−

 
 
 
 =  
 
 − − −  

�

� �
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�

                     (38) 

where j

ia  is a coefficient of the instantaneous characteristic 

polynomial ( )iP λ  of the  matrix 
i

A  given by:   

( )
1

0
i

n
n q q

i

q

P a

−

=

λ = λ + λ∑                          (39)  

and j

id  is a coefficient of the instantaneous characteristic 

polynomial ( )iQ λ  of the  matrix 
i

D  defined such as:  

( )
1

0

n
q q

i i

q

Q d
−

=

λ = λ∑                                  (40) 

Now, we will introduced the polynomial iψ [16], it is given as 

follows:   

( ) ( ) ( )
1

1

0

n
n q q

i i i i i

q

Q d Pλ λ λ λ λ

−
−

=

= + =∑ψ ζ              (41)  

where the parameters 
q
iζ , 0,..., 1q n= −  are given by:   

0 -1 0

-1 -1

1 -1 1

,   1,..., 2

n
i i i

q n q q
i i i i

n n n
i i i

d a

d a d q n

d a

ζ

ζ

ζ − −

 = = − = − =

                 (42) 

Therefore, to simplifier the application of the Kotelyanski 

lemma a change to base of the system (36) into the arrow 

matrix form will be considered.  

Leads the new state vector [18]:   

( ) ( )z t Px t=                                      (43) 

where:  

( ) ( ) ( )

( ) ( ) ( )

1 2 1

2 2 2

1 2 1

1 1 1

1 2 1

1 1 1 0

0

=

0

1

n

n

n n n

n

P

−

−

− − −
−

 
 
 α α α 
 

α α α 
 
 
 
 α α α  

…

…

… �

� � … �

…

            (44) 

and ( )1,... 1j j nα = − ,     j q j qα ≠α ∀ ≠ , 1,...,i N=  are free 

real parameters, that can be chosen arbitrary. 

Leads to the following space representation:   

( ) ( ) ( ) ( )( )

( ) ( ) [ ]
1

   ,0

N

i i i

i

z t v t M z t N z t h

z t P t t h

�

=

 = + − = φ ∈ −

∑
                (45) 

 where 
i

M and 
i

N are in the arrow form [15-19] given as 

follows:  

1 1

1

1 1

1 1

0 0

0

0

0 0
i i

n n

n n
i i i

M P A P
−

− −
−

 α β 
 
 
 = =  
 α β 
 
 γ γ γ 

�

� � � �
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�
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                (46) 

1, 1 1,11

1 1

0  ...       0

           

n n n

i i n n

i i i

N P D P
− − −−

−

 
 = =  δ δ δ  �

                (47) 

 

 

 



with:  

( )
1

1

1

 , = 1,2,..., 1

n

j j q

q
q j

 j n

−
−

=
≠

β = α −α ∀ −∏             (48) 

Then, the elements of the matrices 
i

M  are:  

Taking into account the previous relations, the matrices iT  

1,...i N=  will define as following:   

( )
1

1

1

  , 1,..., 1
j
i i j

n
n n
i i j

j

P  j n

a

−
−

=

γ =− α ∀ = −γ =− − α
∑

                    (49) 

and the elements of the matrices 
i

N  are:  

( )
1

,  1,..., 1j

i i j

n n

i i

Q j n

d
−

δ =− α ∀ = −δ =−
                     (50) 

1 1

1 1

1 1

0 0

0

0

0 0

i

n n

n n
i i i

T

t t t

− −
−

 α β 
 
 
 =  
 α β 
 
  

�

� � � �

� � � �

�

� �

                     (51) 

and the matrix ( )v tT  is given by:   

( )

( ) ( ) ( )

1 1

1 1

1 1

1 1 1

0 0

0

0

0 0v t
n n

N N N
n n

i i i i i i

i i i

T

v t t v t t v t t

− −

−

= = =

 α β 
 
 
 
 

=  α β 
 
 
 
   
∑ ∑ ∑

�

� � � �

� � � �

�

� �

     (52) 

where: 

( )( )
( )

1

2
1 1 1

, 1,..., -1
j j j j n

i i i i j i i

n n n n n n
i i i i i i

t h d j n

t h a d d

γ δ α δ

γ δ

−

− − −

 = + + + =    = + + +   

ψ

   (53) 

Now, we can deduce the following theorem.  

Theorem 3. The system (36) is globally asymptotically stable 

under arbitrary switching rule (2) if there exist 

 < 0jα ( )1,..., 1j n= − ,   ,   j q j qα ≠α ∀ ≠ , satisfying the 

following condition:   
1

1

1

> 0

n
n j

j j

j

t t β α

−
−

=

− +∑                               (54) 

where:   

( )
( )

max ,  1,...

max ,  1,..., 1,  1,...

n n
i

j j
i

t t i N

t t j n i N

 = = = = − =

                (55) 

�  

Proof. For an arbitrary choice  < 0jα ( )1,..., 1j n= − , 

  ,   j q j qα ≠α ∀ ≠  and according to Kotelyanski lemma. In 

this case, it suffices to verify that the matrix ( )( )
1
maxc v t

i N
T T

≤ ≤
=  

is the opposite of an matrixM − . These conditions require 

having the all the principal minors are positive. The 1n −  first 

conditions are checked because the j
α  are negative, however 

the last condition yields to: ( )
1

1

det 0

n

c j

j

T α

−

=

− = >∏χ . where 

1
1

1

n
n j

j j

j

t t β α

−
−

=

= −∑χ . It comes χ < 0 , then condition (54) 

are verifies.  

V. NUMERICAL EXAMPLE  

Consider the following continuous-time switched time-

delay system:  

( ) ( ) ( ) ( )( )

( ) ( ) [ ]

2

1

   , 0

i i i

i

t v t x t D x t h

x t t t h

x A
=

 + − = φ ∈ −

=∑�

 

where:  

1

0 1

1 10
A

 
 =  − − 

, 2

0 1

0.2 10
A

 
 =  − − 

, 1

0 0

2 0
D

 
 =  − 

, 

2

0 0

1 0
D

 
 =  − 

 and 0h >  is the time delay.  

By using the algebraic properties given in (44), (45), (46), 

(47), (48), (49) and (50), the matrices
1

M ,
2

M , 
1

N and 
2

N  in 

the arrow form are the following: 

( )1 2 10 1 10
M

 α β
 =  − α + α+ − −α  

,

( ) ( )2 2 10 0.2 10
M

 α β
 =  − α + α+ − +α  

,  

1

0 0

2 0
N

 
 =  − 

 and 2

0 0

1 0
N

 
 =  − 

.  

For particular choose, 1α =− , 1β =  then the stability 

conditions of Theorem 3 are verified as 

following : ( ) ( )max 9, 9 max 8.3,6 0.7 0− − − − = > . 

Now, by choosing the final time 20ft s= , the switched time 

1 10t s=  and the time delay 2h s= . The simulation results are 

shown in Fig. 1 and Fig. 2 where the initial function 

( ) ]2  1
T

t φ = − . Fig. 2 shows the state responses, the state 

trajectories are depicted in Fig. 2, which show the stability of 

the system given in the example.   
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Fig. 3. The state responses of the system given in the example  

-2 -1.5 -1 -0.5 0 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

X1 

X
2

phase space of switched system with delay=2s

 
Fig. 2. Trajectory response of the system given in the example 

VI. CONCLUSION  

In this paper, new delay-dependent stability conditions 

under arbitrary switching for continuous-time switched time 

delay systems are established. These stability conditions were 

derived from the contraction of an appropriate Lyapunov 

function associated with the application of the Kotelyanski 

lemma and the matrixM −  properties. Compared with the 

existing results, the benefit of this method is that, it can avoid 

the research of a common Lyapunov function which is usually 

very difficult, or even not possible. Simulation results have 

been presented to illustrate the effectiveness of the developed 

method.   

REFERENCES 

[1] A.S. Morse, Control Using Logic-Based Switching, Springer-

Verlag, London, 1997.  

[2] D. Liberzon and A.S. Morse, “Basic problems in stability and 

design of switched systems,” IEEE Control Syst. Mag. 19, pp.59–70, 

1999.  

[3] D. Liberzon, “Switching in Systems and Control,” Birkhäuser, 

Boston, Mass, USA, 2003.   

[4]  Z. Sun and S.S. Ge, “Switched linear systems – control and 

design,” Springer-Verlag, London, UK, 2005.  

[5] Z. Sun and S.S. Ge, “Stability Theory of Switched Dynamical 

Systems,” Springer, London, UK, 2011.   

[6] R. Shorten, K. Narendra and O. Mason, “A result on common 

quadratic Lyapunov functions,” IEEE Trans. Autom. Control, 48, 

pp. 110–113, 2003. 

[7] C.  Meyer, S. Schroder and R.W.D.E. Doncker, “Solid-state circuit 

breakers and current limiters for medium-voltage systems having 

distributed power systems,” I EEE Trans. Power Electron, 19(5), 

pp. 1333–1340, 2004.  

[8] Z. Sun, and S.S. Ge, “Switched Linear Systems Control and 

Design,” Springer, New York, 2002.  

[9] W. Zhang and L. Yu, “Modelling and control of networked control 

systems with both network-induced delay and packet-dropout,” 

Automatica, 44(12), pp.3206–3210, 2008.    

[10]  S. Kim, S.A. Campbell and X. Liu, “Stability of a class of linear 

switching systems with time delay,” IEEE Trans. Circuits Syst, (1) 

53, pp.384-393, 1999.  

[11] R. Shorten, K.S. Narendra and O. Mason, “A result on common 

quadratic Lyapunov functions,” IEEE Transactions on Automatic 

Control, 48 (1), pp. 110–113, 2003.   

[12] Y.G. Sun, L. Wang and G. Xie, “Stability of switched systems with 

time-varying delays: delay-dependent common Lyapunov 

functional approach,” In: Proc. Amer. Control Conf, vol. 5, pp. 

1544–1549, 2006.   

[13] D. Liberzon and R. Tempo, “Common Lyapunov functions and 

gradient algorithms,” IEEE Transactions on Automatic Control, 49 

(6), pp.990–994, 2004.   

[14] R. Shorten, F. Wirth, O. Mason, K. Wulf and C. King, “Stability 

criteria for switched and hybrid systems,” SIAM Rev. 49, pp.545–

592, 2007.      

[15] S. Elmadssia, K. Saadaoui and M. Benrejeb, “New delay-dependent 

stability conditions for linear systems with delay,” International 

Conference on Communications Computing and Control 

Applications, pp.1–6, 2011.   

[16]  S. Elmadssia, K. Saadaoui and M. Benrejeb, “New delay-

dependent stability conditions for linear systems with delay 

Systems,” Science. Control. Engineering, Vol. 1, pp.37-41, 2013.   

[17] A. Jabbali, M. Kermani and A. Sakly, “A New Stability Analysis 

for Discrete-Time Switched Time-Delay Systems,” Special issue-

International Conference on Control, Engineering & Information 

Technology (CEIT’13). Proceedings (PET), Vol 1, pp. 200-204, 

2013.   

[18] M. Kermani and A. Sakly, “Stability analysis for a class of switched 

nonlinear time-delay systems,” Systems. Science. Control 

Engineering, Vol. 2, pp.80–89, 2014.  

[19] M. Kermani, A. Jaballi and A. Sakly, “A New Stability Analysis for 

Discrete-time Switched Time-delay Systems,” IJCEEE, Vol.1, 

pp.23-30, 2014.   

[20] M, Benrejeb, A. Sakly, K. Ben Othman and P. Borne, “Choice of 

conjunctive operator of TSK fuzzy systems and stability domain 

study,” Math. Comput. Simulat, 76, pp.410–421, 2008.  

[21]  M. Araki, “Application of M-matrices to the stability problems of 

composite dynamical systems,” J. Math. Anal. Appl, 52, pp.309–

321, 1975.   

[22] F. Robert, “Recherche d’une M-matrice parmi les minorantes d’un 

opérateur liéaire, ”  Numerische Mathematik, 9, pp.188–199, 1966.  

[23] F.R. Gantmacher, “Théorie des matrices,”  Ed. Dunod, Paris, 1966.   

 
 

 

 


